Using data mining to improve assessment of credit worthiness via credit scoring models

نویسندگان

  • Bee Wah Yap
  • Seng Huat Ong
  • Nor Huselina Mohamed Husain
چکیده

Credit scoring model have been developed by banks and researchers to improve the process of assessing credit worthiness during the credit evaluation process. The objective of credit scoring models is to assign credit risk to either a ‘‘good risk’’ group that is likely to repay financial obligation or a ‘‘bad risk’’ group who has high possibility of defaulting on the financial obligation. Construction of credit scoring models requires data mining techniques. Using historical data on payments, demographic characteristics and statistical techniques, credit scoring models can help identify the important demographic characteristics related to credit risk and provide a score for each customer. This paper illustrates using data mining to improve assessment of credit worthiness using credit scoring models. Due to privacy concerns and unavailability of real financial data from banks this study applies the credit scoring techniques using data of payment history of members from a recreational club. The club has been facing a problem of rising number in defaulters in their monthly club subscription payments. The management would like to have a model which they can deploy to identify potential defaulters. The classification performance of credit scorecard model, logistic regression model and decision tree model were compared. The classification error rates for credit scorecard model, logistic regression and decision tree were 27.9%, 28.8% and 28.1%, respectively. Although no model outperforms the other, scorecards are relatively much easier to deploy in practical applications. 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Credit scoring in banks and financial institutions via data mining techniques: A literature review

This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...

متن کامل

Improved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring

In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...

متن کامل

Using the Hybrid Model for Credit Scoring (Case Study: Credit Clients of microloans, Bank Refah-Kargeran of Zanjan, Iran)

In any country, commercial banks lay the groundwork for economic growth by collecting national resources and capitals and allocating them to different economic sectors. Optimal allocation of resources is especially important in achieving this goal. Banks with an effective and dynamic system of customer assessment can efficiently allocate their resources to customers regardless of their geograph...

متن کامل

Personal Credit Score Prediction using Data Mining Algorithms (Case Study: Bank Customers)

Knowledge and information extraction from data is an age-old concept in scientific studies. In industrial decision-making processes, the application of this concept gives rise to data-mining opportunities. Personal credit scoring is an ever-vital tool for banking systems in order to manage and minimize the inherent risks of the financial sector, thus, the design and improvement of credit scorin...

متن کامل

A Comparative Study of Data Mining Techniques in Predicting Consumers Credit Card Risk in Banks

It is increasingly important for banks to analyze and understand their risk’s portfolio, in particularly those related to credit card as it is one of those instruments that provide the highest return as well as potentially, most risky. The competitive level for the credit card business have increased significantly in the last few years due to the push by the banks to brought forth many new diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2011